Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Partitioning of multivariate phenotypes using regression trees reveals complex patterns of adaptation to climate across the range of black cottonwood (Populus trichocarpa).

Identifieur interne : 001C04 ( Main/Exploration ); précédent : 001C03; suivant : 001C05

Partitioning of multivariate phenotypes using regression trees reveals complex patterns of adaptation to climate across the range of black cottonwood (Populus trichocarpa).

Auteurs : Regis W. Oubida [États-Unis] ; Dashzeveg Gantulga [États-Unis] ; Man Zhang [États-Unis] ; Lecong Zhou [États-Unis] ; Rajesh Bawa [États-Unis] ; Jason A. Holliday [États-Unis]

Source :

RBID : pubmed:25870603

Abstract

Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13-0.32) and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref) explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP), and mean annual precipitation (MAP). These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref) had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures) had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP) had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP) performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.

DOI: 10.3389/fpls.2015.00181
PubMed: 25870603
PubMed Central: PMC4375981


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Partitioning of multivariate phenotypes using regression trees reveals complex patterns of adaptation to climate across the range of black cottonwood (Populus trichocarpa).</title>
<author>
<name sortKey="Oubida, Regis W" sort="Oubida, Regis W" uniqKey="Oubida R" first="Regis W" last="Oubida">Regis W. Oubida</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gantulga, Dashzeveg" sort="Gantulga, Dashzeveg" uniqKey="Gantulga D" first="Dashzeveg" last="Gantulga">Dashzeveg Gantulga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Man" sort="Zhang, Man" uniqKey="Zhang M" first="Man" last="Zhang">Man Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Lecong" sort="Zhou, Lecong" uniqKey="Zhou L" first="Lecong" last="Zhou">Lecong Zhou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bawa, Rajesh" sort="Bawa, Rajesh" uniqKey="Bawa R" first="Rajesh" last="Bawa">Rajesh Bawa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holliday, Jason A" sort="Holliday, Jason A" uniqKey="Holliday J" first="Jason A" last="Holliday">Jason A. Holliday</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25870603</idno>
<idno type="pmid">25870603</idno>
<idno type="doi">10.3389/fpls.2015.00181</idno>
<idno type="pmc">PMC4375981</idno>
<idno type="wicri:Area/Main/Corpus">001D45</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D45</idno>
<idno type="wicri:Area/Main/Curation">001D45</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D45</idno>
<idno type="wicri:Area/Main/Exploration">001D45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Partitioning of multivariate phenotypes using regression trees reveals complex patterns of adaptation to climate across the range of black cottonwood (Populus trichocarpa).</title>
<author>
<name sortKey="Oubida, Regis W" sort="Oubida, Regis W" uniqKey="Oubida R" first="Regis W" last="Oubida">Regis W. Oubida</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gantulga, Dashzeveg" sort="Gantulga, Dashzeveg" uniqKey="Gantulga D" first="Dashzeveg" last="Gantulga">Dashzeveg Gantulga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Man" sort="Zhang, Man" uniqKey="Zhang M" first="Man" last="Zhang">Man Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Lecong" sort="Zhou, Lecong" uniqKey="Zhou L" first="Lecong" last="Zhou">Lecong Zhou</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bawa, Rajesh" sort="Bawa, Rajesh" uniqKey="Bawa R" first="Rajesh" last="Bawa">Rajesh Bawa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Holliday, Jason A" sort="Holliday, Jason A" uniqKey="Holliday J" first="Jason A" last="Holliday">Jason A. Holliday</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13-0.32) and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref) explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP), and mean annual precipitation (MAP). These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref) had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures) had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP) had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP) performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25870603</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Partitioning of multivariate phenotypes using regression trees reveals complex patterns of adaptation to climate across the range of black cottonwood (Populus trichocarpa).</ArticleTitle>
<Pagination>
<MedlinePgn>181</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2015.00181</ELocationID>
<Abstract>
<AbstractText>Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13-0.32) and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref) explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP), and mean annual precipitation (MAP). These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref) had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures) had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP) had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP) performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oubida</LastName>
<ForeName>Regis W</ForeName>
<Initials>RW</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gantulga</LastName>
<ForeName>Dashzeveg</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Man</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Lecong</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bawa</LastName>
<ForeName>Rajesh</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holliday</LastName>
<ForeName>Jason A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University Blacksburg, VA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus trichocarpa</Keyword>
<Keyword MajorTopicYN="N">black cottonwood</Keyword>
<Keyword MajorTopicYN="N">common garden</Keyword>
<Keyword MajorTopicYN="N">local adaptation</Keyword>
<Keyword MajorTopicYN="N">regression tree</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25870603</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2015.00181</ArticleId>
<ArticleId IdType="pmc">PMC4375981</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 1990 Dec;7(1_2_3_4):157-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2004 Nov;17(6):1286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Apr;25(4):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Nov;171(3):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Aug;99(2):224-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Dec;61(12):2849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Apr;17(8):1885-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 24;462(7276):1052-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20033047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 1;26(5):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1553-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jan;98(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Oct;31(10):1076-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Oct;32(10):1214-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23022688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 14;13:703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23241106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 Aug;94(8):1708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24015515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Nov;14(11):807-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24136507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 May;23(10):2486-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2008 Feb;1(1):95-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 May;123(2):168-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Feb;93(1):80-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Oct;135(2):367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8244001</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Oubida, Regis W" sort="Oubida, Regis W" uniqKey="Oubida R" first="Regis W" last="Oubida">Regis W. Oubida</name>
</region>
<name sortKey="Bawa, Rajesh" sort="Bawa, Rajesh" uniqKey="Bawa R" first="Rajesh" last="Bawa">Rajesh Bawa</name>
<name sortKey="Gantulga, Dashzeveg" sort="Gantulga, Dashzeveg" uniqKey="Gantulga D" first="Dashzeveg" last="Gantulga">Dashzeveg Gantulga</name>
<name sortKey="Holliday, Jason A" sort="Holliday, Jason A" uniqKey="Holliday J" first="Jason A" last="Holliday">Jason A. Holliday</name>
<name sortKey="Zhang, Man" sort="Zhang, Man" uniqKey="Zhang M" first="Man" last="Zhang">Man Zhang</name>
<name sortKey="Zhou, Lecong" sort="Zhou, Lecong" uniqKey="Zhou L" first="Lecong" last="Zhou">Lecong Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25870603
   |texte=   Partitioning of multivariate phenotypes using regression trees reveals complex patterns of adaptation to climate across the range of black cottonwood (Populus trichocarpa).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25870603" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020